Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean

In the relatively unproductive waters of the tropical ocean, islands can enhance phytoplankton biomass and create hotspots of productivity and biodiversity that sustain upper trophic levels, including fish that are crucial to the survival of islands’ inhabitants. This phenomenon, termed the island mass effect 66 years ago, has been widely described. However, most studies focused on individual islands, and very few documented phytoplankton community composition. Consequently, basin-scale impacts on phytoplankton biomass, primary production and biodiversity remain largely unknown. Here we systematically identify enriched waters near islands from satellite chlorophyll concentrations (a proxy for phytoplankton biomass) to analyse the island mass effect for all tropical Pacific islands on a climatological basis. We find enrichments near 99% of islands, impacting 3% of the tropical Pacific Ocean. We quantify local and basin-scale increases in chlorophyll and primary production by contrasting island-enriched waters with nearby waters. We also reveal a significant impact on phytoplankton community structure and biodiversity that is identifiable in anomalies in the ocean colour signal. Our results suggest that, in addition to strong local biogeochemical impacts, islands may have even stronger and farther-reaching ecological impacts.

More information

Messié, M., A. Petrenko, A.M. Doglioli, E. Martinez and S. Alvain, 2022. Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean.  Nature Geoscience, 15, 469–474, https://doi.org/10.1038/s41561-022-00957-8 (full text, PDF)